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ABSTRACT

The applied research discussed in this report determines

and compares the correct classification percentage of the non-

parametric sign test, Wilcoxon's signed rank test, and K-class

classifier with the performance of the Bayes classifier. The

performance is determined for data which have Gaussian, Laplacian

and Rayleigh probability density functions. The correct

classification percentage is shown graphically for differences

in modes and/or means of the probability density functions

for four, eight and sixteen samples. The K-class classifier

performed very well with respect to the other classifiers used.

Since the K-class classifier is a nonparametric technique,

it usually performed better than the Bayes classifier which

assumes the data to be Gaussian even though it may not be.

The K-class classifier has the advantage over the Bayes in that

it works well with non-Gaussian data without having to determine

the probability density function of the data. However, it

should be noted that the data in this experiment was always

unimodal.
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CHAPTER I

INTRODUCTION

A. Introduction to the Problem

Pattern recognition theory has a wide range of applications in

radar [32], sonar [5], imagery recognition, and alpha-numeric character

identification [8]. The recognition of patterns is accomplished by many

different algorithms. They process the input data according to the

algorithms in order to draw conclusions. Since a pattern recognition

problem is usually concerned with classifying a set of input data into

one of many classes, the resultant conclusion is the designation of the

input data set to a certain class. In order to use the algorithms they

are usually implemented as software or hardware. Therefore, large

quantities of data can be processed rapidlv and complex data inputs

are reduced to outputs which provide a simple, understandable result

to a user of the algorithm.

There seems to be no limit for the development of the algorithms.

Any algorithm which is useful for the solution to a recognition problem

can be included in the field of pattern recognition algorithms. Many

algorithms are mathematically well defined and developed to meet the

conditions of the problems. There are, however, two general approaches

to the recognition problems [38]. One is to treat the problem in deter-

ministic sense, while the other starts with the statistical point of

view. The statistical approaches can again be subdivided into para-

metric and nonparametric methods.

Nonparametric methods, which have attracted the attention of many
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investigators recently, have advantages over parametric methods in their

relative insensitivity to the changes of the input statistics and no

need for a priori information about the parameters of the probability

density function (pdf) [2].

One of the problems encountered at the Remote Sensing Institute of

South Dakota State University is the recognition of crops on the film,

which is exposed at various altitudes. Since the photographic imagery

is affected by complex set of factors, the nonparametric methods seem

to be appealing to investigators in search for an appropriate

recognition algorithm.

Nonparametric methods have inherent drawbacks and it is necessary

to compare these methods to those of parametric methods which have

already been proposed and used. Many works on nonparametric area have

appeared as indicated by the literature review presented in this report.

Many of the authors show the good aspects of these nonparametric methods

with relatively little about the limitations of their use, especially

in the practical situations. A study on the comparative performance of

nonparametric methods with respect to the parametric methods is necessary.

B. Objectives and Significance of the Thesis

The main objective of this thesis is to determine and compare the

classification error probabilities of several nonparametric methods to

parametric ones in practical or near practical conditions using computer

simulation. The usefulness of the Asymptotic Relative Efficiency (ARE)

is also observed. The ARE is used to compare one algorithm with another

in the limit case conditions which are far from practical circumstances.

Details of the ARE concept is given in Chapter II and
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some of the literatures [71, [22].

The next objective is the investigation of the complexity of the

several algorithms studied. Many investigators are implementing their

algorithms on computers, and since the computer time is determined by

the complexity of the algorithm, a very crucial aspect of any algorithm

is its complexity. If the data are processed by other than computer,

the hardware of the system required will become more expensive and com-

plicated as the calculation gets more complex. In this respect, the

calculation problem is studied.

The previously stated objectives are performed extensively with

two-class problems, but the actual classification problem in imagery

recognition usually is a multi-class one. Hence, the generalization of

the two-class problem to the multi-class one is studied as a minor

objective.

One of the important aspects of' this work is that the performance

of each algorithm with various data distribution conditions can be found

in very oractical, not theoretical, circumstances. The adoption of a

method as a data processing algorithm bv a designer of the system can

be based more positively on the results of this work. The merits and

the limitations of the nonparametric methods are also determined by the

actual handling of data through each method.

The effects of sample sizes and signal-to-noise ratios on error

probabilities are experimented to give more insight into the algorithm

and to see various situational behavior of the method. Through the

experiments, determining a nonparametric threshold happens to be an

important matter in actual applications of algorithms. This is also
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studied and a specific result is drawn.

C. Literature Review

Bradley [1] talks about the justification of using nonparametric

methods in many cases. His book is also an excellent source of general

information on the nonparametric methods. Several useful cases of non-

parametric tests are treated in the works of Carlyle and Thomas [2]

and Thomas [2].

Mathematical aspects of nonparametric methods are handled by

Fraser [7]. Kraft and van Eeden [17] approach the nonparametric method

in a unique fashion using treatment and effect concept. Over 3000

nonparametric references are listed in the work of Savage [21]. A

determination of probability density function of sequential rank vector

is done by Fu [8], and Fu and Chien [9]. More work on the sequential

nonparametric method is given by Chadwick and Kurz [3].

The detailed process of determining the ARE of some nonparametric

algorithms with respect to the Student's t-test is given in the famous

work of Hodges and Lehmann [15]. They showed that the ARE of the

nonparametric rank sum method compared to the t-test never falls below

0.864.

Feustel and Davisson [5] report that mixed statistics is a good way

of compromising between calculation complexity and performance efficiency.

Daly and Rushforth [4] compare the ARE of nonparametric to parametric

optimal detector in the Gaussian and non-Gaussian distribution. It was

shown that nonparametric methods are more flexible than the correspond-

ing optimal detectors in ARE sense.

Fralick and Scott [6] deal with the nonparametric nearest-neighbor
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method to estimate the Bayes' risk. It is proven by Groeneveld [10]

that the method based on the correlation of the signs of differences of

observed data has an efficiency exceeding more than unity compared to

the parametric method under certain noise distributions.

A procedure is reported by Kanefsky and Thomas [161 that modifies

given sampled-data parametric detectors to asymptotically nonparametric

ones. Applications of the K-S test to a signal detection problem are

performed by Millard and Kurz in their two similar works [18], [19].

D. Organization of the Thesis

Since the nonparametric methods are compared to the parametric

Bayes' classifier, a brief review of parametric and nonparametric

methods is provided in Chapter II.

Part A of Chapter II deals with parametric methods according to the

available a priori knowledge of the probability density function. Part

B of the chapter starts with the definition of ARE and explains one-

input nonparametric methods as well as the two-input case. Correlation

methods are also discussed.

In Chapter III the two-class problem is used to test the performance

of nonparametric and Bayes' classifiers. A fixed sample size of 16 is

used for each of the five different conditions of the separations of

means for the Gaussian data. For the double-sided exponential and

Rayleigh distribution cases there are three different sample sizes used

for each of the different signal level separations. The different error

probabilities for different nonparametric thresholds are also experiment-

ed to see the effect of threshold values.

The multi-class problems are treated in, Chapter IV. The univariate
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multi-class, the multivariate two-class and the multivariate multi-

class problem are considered separately in that order.

The conclusions of the thesis work and the suggestions for further

research are discussed in the last chapter.

I
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CHAPTER II

PATTERN RECOGNITION ALGORITHMS

A. Parametric Methods

In general, the first decision that should be made by a designer

of a system to solve a pattern recognition problem is to make a choice

of an algorithm. The designer can choose between a deterministic and

a statistical algorithm. A deterministic procedure which has been

also very important and well developed [35] will not be discussed here

except for the relationships with the statistical one. The statistical

approach can be conveniently subdivided into parametric and nonpara-

metric algorithms. A parametric method makes use of the parameters

of the probability density function (pdf) or the distribution of input

data. The distribution information may not be complete and it is

necessary to estimate the parameters. Reasonable assumptions and

convenient derivations can be made quite often to make the problem of

parameter estimation easier. The question of how good the approximation

is compared to the original is not simple to answer. The nonparametric

statistical methods will be discussed in part B of this chapter.

The parametric methods can be studied in several cases according

to the type or combinations of types of available information [121.

The first type of data information gives only the form of the distribu-

tion but not the parameters, 0. In the second type of information, the

parameter values are also given in addition to the functional form of

the distribution, hence, complete information is furnished. In the

third type of data information, neither the functional form of the

distribution nor the parameters are given but only a set of samples
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from known classes is provided. In this third type, the samples should

be utilized to estimate the distribution. The last type of information

gives only the samples without any a priori information. This fourth

type is the most difficult and probably the most general situation in

which pattern recognition algorithms have to be developed. The data

samples are used to determine possible decision boundaries. New input

data can be classified as soon as the decision boundaries are

determined.

While these parametric methods are straightforward and mathemati-

cally eligible for deeper analyses, they also have many shortcomings.

In many instances, little or almost no prior information about the

input data is given. It will be very tedious and time consuming to

evaluate the distribution. Even if it is possible to spare the time

and labor to figure out the distribution, it may not be easy to

represent the distribution with a finite number of parameters because

of the complexity of the distribution shape. In the following sections,

each case in connection with the data types is studied further.

1. Bayes' decision rule

Consider the case where the distribution is completely known and

there are only two classes to classify from. This is the case where

the combined information of the data type one and two is furnished.

Let the conditional probability density function of class 0 and class

1 be f(x/Ho ) and f(x/H1 ), respectively. x is the given set of data

represented in vector form with n elements and Ho is the null

hypothesis that the data set is from class 0 instead of the alternative

H
,
that the data set is from class 1. The most widely accepted decision
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criterion is the maximum likelihood ratio. The ratio of the two distri-

butions is compared to a certain threshold of value C. If the ratio

exceeds the threshold the hypothesis Ho is accepted, otherwise

alternative H1 is accepted. It can be written as follows:

L(x) = f(x/H0 ) / f(x/H )

and if

L(x) > C - Ho is accepted or

if L(x) < C + H1 is accepted.

To determine the bias C is the responsibility of the investigator.

The Bayes' decision rule determines the threshold by the a priori

probability of class i, p(i), and the cost of making decisions of the

class, K
i
, as

C = p(O)Ko /p(l)Kl

where p(O), p(l) and K 0 , K1 are assumed known.

The Bayes' decision optimally minimizes the overall risk of making

errors. The fundamental Neymann-Pearson criterion requires a to be a

minimum for a fixed value of a. It is shown that the likelihood ratio

test given above will satisfy the Neymann-Pearson criterion also [29].

In other words, the test gives a lower probability of error of second

kind than any other tests for the same or less probability of error of

the first kind. If the distributions are Gaussian with variance-

covariance matrix E0 and mean vector Po for class 0 and E1, p1l accord-

ingly for class 1, then the likelihood ratio can be expressed in a

more explicit form. Again n is the number of elements of vector x and

E.1 is the inverse matrix of Ei in the next equations.
I I
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As f(x/O) = (2X)'7 I70 11 /2 exp [-1/2 (x-P.o) T0(x.-io)]

n _/ exp[_1/2(x_~l)T[ 1_ 1
and f(x/l) = (2w) - 1 /2 exp[-1/2(x-)T (x-_1)], then the

likelihood ratio

exp(-1/2)[(x-po)TX: (X-o)-(x-11 ) P )]

The equation becomes more compact in form if we make o=: =

and by taking logarithms of both sides as

In L(x) =-1/2[(x-Po)T - (x-PO)-(x- )T - 1 ( x-_P)

Without utilizing the knowledge of quadratic form, the above expression

can be simplified to a linear form as shown in Appendix A, to,

In L(x) = xT_- B_. ,) + const.

This is essentially a linear polynomial equation and of course easy

to work with.

These quadratic forms represented as Q(x) = (x-P.)- 1 (x-1) imply

the square of distance between x and ii, and are optimal for the Laplace

and rectangular distributions [26], as well as the aforementioned

Gaussian distribution.

Going back to Bayes' decision, which requires minimum probability

of error, it is understandable that a decision should be made to assign

an unknown x to the one of k classes for which f(x/k) is greater than

any other classes. For those distributions stated above, decisions

can be made by only comparing the quadratic form itself if there are

some reasonable assumptions.
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2. Learning with a teacher

When the functional form of conditional distribution with unknown

parameters is given together with a set of samples from known classes,

the given samples would be used as a training set to estimate the

unknown parameters. Writing the sets of samples as Xi(n) = {xi(l),...

xi(n)l, i = 0,1 and the conditional probability distribution functions

of each class as f(x/Xi(n), i) instead of the form f(x/O,i) for known

parameters 0, the principal quantity of likelihood ratio can be

represented with the same format as before.

L(x) = f(x/X°(n),O) / f(x/Xl(n),l)

The basic operation is to calculate f(x/Xi(n),i) for each i and it is

done by a recursive procedure in Appendix B, as

f(x/Xi(ni) = f(x/O,i) f(O/Xi(n),i) dO

and f{O/Xi(n)}= [f{xi(n)/Ol f {o/Xi(n-l)l]/[f f(xl(n)/O)f(/Xi(n-1l)dO]

Here, the expression of f(O/Xi(n)) is used for simplicity instead of

f(O/Xi(n),i). From this recursive way, f(O/Xi(n)) can be calculated

and used for the likelihood ratio test even though it in fact may be

difficult to execute. If the distribution is assumed Gaussian, then

there is a direct way of calculating the parameters [28].

3. Learning without a teacher

If the given set of samples are not predefined or classified,

then the method discussed in the "learning with a teacher" scheme

cannot be used without modification. This so called, "learning without

a teacher" case is quite realistic, but the difficulties of handling

data are enormous and one usually resorts to suboptimum solution rather
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than the direct application of procedures.

Learning with or without a teacher method is not easy. In each

stage of calculation of conditional probability density functions, the

system should be capable of adapting itself for various operations,

both linear and non-linear, and the possibility of this happening makes

the predictions on system behavior very difficult. The realization of

the system is complex, also.

4. When the functional forms are not known

This is the most general and difficult of the four cases.

The data sets are given without any prior knowledge on the functional

distribution, and the classification of samples may or may not be known.

There is no conclusive result on the case when the samples are not

classified [28], [38].

If the samples are from known classes, two deterministic approaches

exist. The first one is to find a linear decision function which is

valid at least for the given samples of known classification [35].

The assumption is that a sufficient number of samples are available.

A linear classifier thus assigns an unknown pattern x to class 0 if

x 'w>C and to class 1 otherwise. The coefficients wj of w are pro-

portional to the components of a vector onto which the patterns are

projected. The simplest method of computing the parameters of a linear

classifier is to let w = SO-S
l
where Si's are typical members of the

two classes. Quite often these S2's are set equal to Po, Pl, the

mean vectors of the samples.

As the functional forms of the distributions are not given, then

w, which minimizes the error probability, cannot be solved analytically.
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This deterministic method requires an optimization procedure to

calculate the coefficients. Since this deterministic method does not

make use of any a priori probability, it lacks the property of

quantitative evaluation of the performance.

The second method achieves pattern recognition using a conditional

probability density function f(i/x) [30]. If the probability density

function can be expanded into a series, then the decision function g(x),

which classifies a given set of data to class 0 if it is positive and

class i if it is not, can be expressed as

g(x) = f(l/x) - f(O/x)

2 f(l/x) - 1 i wg(x).
j=l :

To determine gj is another difficult problem and usually orthonormal

functions are used. Suppose that gj's are defined, then the problem

which remains is only to calculate w.'s for values of the functions

measured at random points.

5. Sequential decision methods

In the previous sections, certain satisfactory numbers of features

or measurements were assumed to be fixed and every method was mentioned

without asking the question, "How many measurements should one take

from a class?" There should be at least enough features or measure-

ments, but the number cannot be increased indefinitely because of the

cost of taking measurements or the limitation in time [33], [34]. If

the cost of taking measurements is significant or the features them-

selves are sequential in nature, then sequential methods should be

used [8].
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It is specifically important to have the data in such an order that

the decision should be terminated at the earliest stage possible. After

the n-th feature measurement is taken, the likelihood ratio

n

L(x)
n

= H f(x/H0 )/f(x/H1)
i=l

is calculated and compared with two stopping boundaries A and B.

If L
n

> A, then x is classified into class 0 and if L
n

< B, then x is

classified into class 1, otherwise the same process is repeated for

the (ntl)th measurement.

The stopping boundaries A and B are set in much the same way as

the threshold is determined in Neymann-Pearson criterion for fixed

number of measurements, or

A = (l-y)/D, and B = y/(l-a)

where y and a are set by the user.

It is shown, for a two-class decision problem, that a sequential

decision method has an optimal property in the sense that it consumes

the least number of features to make the same or lower probability

of error compared to any other classification algorithms [9]. If the

functional forms of distributions are not given, learning schemes should

also be adopted in addition to the use of the sequential method.

The four cases sited before in connection with the available

information about the distributions, and the possible algorithms that

could be adopted for classifications are tabularized for simple display

in Table II-1.

6. Summary of the parametric methods

The basic properties of Bayes' optimal decision rule are
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discussed along with Neymann-Pearson criterion for the case when complete

a priori information is known for the conditional distributions. If

the parameters of the distributions are not given, the samples from

known classifications can be used to estimate the parameters. If the

sample classes are not given, a nonsupervised learning method is

necessary. Every method mentioned can be substituted by sequential

decision procedures which guarantee the optimal solution. When no

functional form is supplied with samples, and this is the most probable

case of all, deterministic ways of using discriminant functions or

stochastic methods are available for substitution, but no absolutely

general method is in existence.

While these parametric methods seem straightforward and mathe-

matically eligible for further development of algorithms, it should

be also noted that the assumptions set for the parametric methods do

not always conform to practical situations. In fact, the functional

form of distributions are not known and their forms are rarely Gaussian

[1], or after non-linear transformations which are commonly used, the

data certainly will not remain Gaussian if the original data are

Gaussian [31]. The learning with or without a teacher is in most

cases too involved and not easy to implement. The motivation to

investigate nonparametric methods is thus aroused.
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B. Nonparametric Methods

For most general situations in which little is known about the

distribution of random variables, it is necessary to develop methods

that do not depend on any particular form of a probability density

function, or on less restrictions on the form of distributions. A

nonparametric method can be used when less than a complete knowledge of

the pdf is provided and the estimation of the distribution is impossible

with a finite number of parameters.

The term "nonparametric" comes from the fact that these tests do

not test or estimate the parameters of distributions as is done for

parametric methods. Since this category of statistical methods requires

very little knowledge of the distribution of the variables, the name

"distribution-free method" is also often used.

Karl Pearson's chi-square test of fit [14] proposed in 1900 is one

of the earliest nonparametric methods but relatively little concern was

directed to this somewhat unfamiliar field of statistics until

Wilcoxon's rank method was introduced in 1945. This test showed

remarkable performance in its simplicity and relative error probability,

even when the distributions are Gaussian. These nonparametric methods

thus have advantages which are: (1) insensitivity to the input

variables statistics while a fixed maximum error probability in one

class is maintained, (2) relatively easy implementation of the system

and software resulting in reduced time for calculation.

While the lack of statistical utilization of information about the

input variables keeps one from designing an absolutely optimal system,
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it should also be remembered that an optimum system is not always

feasible in practice. Nonparametric methods are worth consideration.

The performance figure of nonparametric methods is considered next.

1. Asymptotic relative efficiency

Asymptotic relative efficiency (ARE) is used as a figure of merit

of one pattern recognition algorithm with respect to another method

for the same hypothesis test.

Let N1 and N2 be the smallest number of observations needed for

each of the two algorithms to be compared to reduce the ( error at

most below a certain value while maintaining the same fixed a error.

Pitman's relative efficiency is defined as

e,2 = N
1
/N2

This ratio should be a function of a, a and the probability density

function of each class [2], [7], or

el, 2 = nl(a,s,f(x/HO), f(x/H1))/ n2 (a,8,f(x/H0 ), f(x/Hl))

As the relative efficiency defined above is difficult to evaluate

for any arbitrary c, 8, and pdf's, the asymptotic relative efficiency

is derived for simplified comparison by letting N1 and N2 approach

infinity. However, it is necessary to reduce the signal level to

zero in order not to have B become zero with infinite number of samples

as it would be for consistent statistics.

Then the ARE is,

ARE1 2 = lim el 2(al,f(x/H0 ), f(x/H1 ), N1 ,N 2),

N1 ,N2-
HI-H2
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The subscripts specify the ARE of method 2 compared to method 1.

Allowing H1 to approach Ho is in analogy to taking a relative efficiency

of two system performance in weak-signal condition, hence an ARE less

than unity means that algorithm 2 is less efficient than algorithm 1.

An ARE more than unity means that algorithm 2 is better than the other.

It is true that ARE gives a measure of comparing two methods in perform-

ance, but its engineering value has not yet been completely proven.

2. One-input tests (With Reference Noise)

Suppose there is only one input channel and each measurement vector

obtained from either of the two classes has data length of n. Several

methods are available to process the data.

a. Sign test

This test is sensitive to the difference of the medians of the

two classes provided one of the medians is at the origin.

Let H., H1 be the null and alternative hypothesis, respectively, and x

an input vector as before. If the x.'s, the elements of x, are all

independent and identically distributed with the same cumulative

distribution function F(xi), then the null hypothesis Ho is that F(O)

equals one half and the alternative H1 is that F(O) is not equal to one

half.

For class 0 the probability of positive observations occurring

is the same as that of the negative observation occurrence. For class

1 with median values not equal to zero, the probability of observing

positive or negative values is greater than that of the opposite sign

observations. This test calculates the number of positive or negative

observations, which ever is smaller, and compares it to a certain thres-

hold.
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If the observation number exceeds the threshold, H0 is accepted, otherwise

H, is accepted. The threshold is determined in the following way:

For the case when only class 0 is present, the probability of

observing positive signs is the same as that of observing negative signs.

1, if x. > 0
Let U { 

0, if xi < 0

then Ui corresponds to a single independent variable with equal probabil-
n

ity of occurrence of a 1 or 0. The sum, m = I Ui, will be binomially
;=1

distributed corresponding to n independent trials of an experiment with

equal a priori probabilities of negative and positive sign observations.

Naturally the number of positive or negative signs will be changed

appreciably from the mean value of class 0, or n/2, whenever a set of

data from class 1 is processed. If the data in class 1 have more positive

median than class 0 data, the number of positive observations will be

greater than the number of negative signs. For class 1 with a more

negative median, the reverse will be true. To a certain predetermined

significance level, the number of positive or negative observations is

compared and determined whether class 0 is present or not. For example,

suppose a significance level of 10 per cent is selected. With class 1

which has the more positive median and for sample size n = 12, m should

be less than 4 because

(1/2 )2 12
(1/2)nI (1/2)n<0.1<(1/2)n1 (1/2)

n

m=O m=O m
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For a sufficiently large number of samples, the binomial

distribution can be approximated by a normal distribution with mean

Ul=np=n/2 and variance --=npq=n/4 [22). The threshold C is determined

by

c-n/2\
F(i7n2 ]= 1 - a where F(x) is cumulative normal distribution

function with 1--0 and o2=1.

It has been proven that the sign detector has an ARE of about 64%

compared to a linear optimal detector of dc signals in Gaussian noise.

For a noise other than Gaussian, like the Laplace distributions, the

efficiency becomes greater than unity [7].

b. Wilcoxon's signed-rank test

This test is also sensitive to the difference in the median

between the classes and requires the class 0 distribution be symmetric

about the origin. It is said that the nonsymmetry of class 1 can be

detected through this test [1].

On the contrary to the sign test which does not use much informa-

tion about the input data except for the signs, this test uses the

information of ranks of each observation. This implies that the signs

are weighted according to the distance from the origin. For this test,

a set of data is ordered and ranked according to their absolute values

in increasing order and one takes the rank sum of positive data. From

H0 , for which F(O) = 1/2 and with identical distribution for each

observed variable, it is clear that the sum of ranks of positive or

negative observations should be a random variable. Each of the 2 n

sets of possible sums has the same probability of occurrence, so that

the distribution of sums is predetermined. The distribution will range
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from 0 to n(n+l)/2 with mean at n(n+l)/4. For the alternative HI, for

which F(0)<1/2 because of the positive signal, the number of positive

observation ranks will be more than that of negative observation ranks.

If a particular sum of ranks of an observation falls into a region

within a certain threshold, then the hypothesis Ho is accepted, other-

wise, H 1 is accepted. Mathematically,

n
if I di> C, accept H0 or

i=l

n
if E d.< C, accept H1

i=l 1

0, if x.<O
where d 

i
{ 1
i, if xi>O

The threshold is obtained by the direct use of a error, the error

probability of type 1, since a fixed number m of 2
n

combinations

should be outside of the threshold, or m/2n<a.

For a sufficiently large number of observations, the distribution

of rank sums can be approximated by normal distribution [16] with mean

P=n(n+l)/4 and variance a2 =n(n+l)(2n+l)/24, hence threshold C is

calculated from

F[( C-O)/a] = 1-a

It is found that the Wilcoxon's signed-rank method has an ARE of about

95.5 per cent with respect to optimal linear detector if the distribu-

tion is Gaussian but it increases considerably to more than 100 per

cent as the distribution is drifting away from Gaussian [7]. A more

impressive result was reported by Hodges and Lehmann [15]. They

showed that the ARE of the Wilcoxon's test relative to the t-test is
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never less than 86.4 per cent for any kind of distributions F(x), and

is arbitrarily high without bound. So the linear test requires only

13.6 per cent less data than Wilcoxon's test at its best for the same

performance, but it may require more samples in many cases.

c. Sequential nonparametric method

Sequential methods in parametric cases are mentioned in part A of

this chapter. According to Fu and Chien [9], significant findings were

made in recent years in calculations of sequential distributions and

the practical use of it to nonparametric case. In applying ordinary

sequential probability ratio test to its nonparametric cases, it is

necessary to find out the probability distributions of the sequential

rank vectors r(n) = (rl,r2,...,rn) of original vector x. The

sequential rank is represented as rn if x is the rn-th smallest

element in the sample vector x.

Since there exists a one-to-one correspondence between the ordered

observations and the sequential rank vector, the distribution of the

sequential rank is completely determined by the ordered observation.

If x.'s are all independent, then,

F{r(n)} = F(xl< x2< ...< xn)

n
= j············ US dFj(xj)

j=i
-<X 1 < .. <X

where Fj(xj) indicates the distribution functions of xi.

If Lehmann's alternatives are adopted for the distribution

functions Fj(xj), then
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Fj(xj) = Frj(xj) = {F(x )lrj rj>O
J = JI j

where rj is the observed sequential rank,

or dF(x) = dFrj(x.)
] I

= rjFr-l(xj)

From this,

n
F(xl< 2 <...<x) = ........... ..fn dFrj(xj)

j=l
-0o<X< 1..<X <Xn

n n
= II rj/fl (, rk)

j=l j=l k=l

which is found by some simple manipulation.

Relabeling the xj's, the probability of any order of the xj's can be

determined.

3. Two-input tests

Suppose that, in addition to the channel of the one input case,

there is another statistically independent noise channel which is not

perturbed by the presence of signals. Let this additional set of

reference noise input data by y = (Yl,Y 2 ,..., Yn) which is independent

of x. This situation should not be confused with the case where

the presence of signal changes statistics in both channels. The latter

case is mentioned in later section.

With the same assumptions made in one-input test, the null

hypothesis is that the median of one class is the same as that of the

other against the alternative that the medians are different, or
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Ho F(z.= O) = 1/2

H1 : F (z.=O) • 1/2

where z. x.-y-.

The same procedures discussed in previous section of one-input case

can be employed by treating z. as the variable x. of one-input case.

a. Sign test

This test calculates the number of positive or negative signs

of z = x - y and compares the number to a certain threshold. As in

the one-input sign test, the threshold is found from the fact that

signs of observations are elements of a random vector which has equal

probability of occurrence of either positive or negative signs if Ho

is true. For a sequence of random signs, the distributions should be

binomial. If a distribution falls beyond a predetermined threshold

of the binomial distribution, Ho is rejected, otherwise H1 is rejected.

b. Wilcoxon's signed-rank test

Like the sign test for the two-input case, this test also makes

use of the same concept as for the one input case. First, determine

the signed differences of the two sets of observations, x and y. Let

z be the signed differences in vector form. Then determine the ranks

of elements according to their absolute values. These ranks are then

attached with positive or negative signs, which ever are original.

For an alternative hypothesis which has more positive median than the

null hypothesis, there will be more positive elements than negative

ones, hence more positive ranks than negative. The next step is to
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find the sum of ranks of positive signs if the alternative has more

positive median, negative signs if the alternative has more negative

median.

Since the sum of ranks is a random variable which is approximately

normally distributed with mean p=n(n+l)/4 and standard deviation

o=/n(n+lX2n+l)/24 [16], the probability of a value of sum as extreme

as it can be computed. If it falls beyond a threshold, that the

distribution differs distinctively, the alternative H1 is accepted.

Otherwise Ho is accepted. The above can be expressed simply as,

n n >C-H0 is accepted

i X U(Xi-Yi) {
j=l i=n 1 <C-H1 is accepted,

for positive alternative. Threshold C is determined in the same way

as for the one input case.

c. Rank-sum test

It has been shown that the previously mentioned sign or signed-

rank tests require some restrictions on the distribution shapes. For

the test of the null hypothesis H0 , that the two x and y are from

identical distributions, against the alternative Hl, that the two

are from different distributions, the Wilcoxon, Mann-Whitney's rank-sum

method can be used. It is assumed that the xi's are independent and

identically distributed as all yi's are, also.

Different sample sizes may well be used, so let m and n be the

number of measurements in each of x and y, respectively. From the

assumption of independent random measurements of xi's and yi's, each

of the (n+m)! possible permutations of measurements of the original

sets must have the same a priori probability if the null hypothesis of
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identical distribution is true. In other words, any of the ( m )

possible combinations of x and y data sets from (m+n) measurements

were equally probable to have become the actual observation set.

For each of these nm possible data sets, there exists a value

Ri, where R. is the rank of x. in size among the (me+n) observations.
i= l1 1 ~m /mn
Then the distribution of I Ri values of all the m M)possible data

sets must conform to a predefined distribution to satisfy H0. The

null hypothesis of identical distribution is rejected if the actual
m

values of I R. falls outside of preselected significance level. This
i=l x

test is very sensitive to the difference in the level (mean) separation

but is also somewhat sensitive to the difference in shape and variance

[1].

The ARE of the rank-sum test with respect to the optimal linear

detector for Gaussian distribution case is 0.955. This is the same

as that of signed-rank test since both methods are the same for

symmetrical distributions. The ARE of this test never falls below

0.864 with respect to the optimal linear detector and can be arbitrary

high for many distributions [15].

4. Two-input tests (correlation method)

Assume a system with two input channels which have statistically

independent noises but the presence of a signal perturbs both channels

simultaneously. The appropriate test decides on the hypothesis that

the two channels are independent versus the alternative of dependence.

This kind of situation occurs in the practical case of the scattered

or fading radio communication channel. The two most widely used non-

parametric methods for testing if correlation exists
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are the rank correlation and polarity coincidence correlation methods

[6], [22].

a. Rank correlation method

Let each of the two channels be represented by x and y, respect-

ively. A pair (xi,Y
i
) is a sample which is obtained at the same

instance of observation, or matched observations. The ordinary linear

sample correlation coefficient is defined as

E(xiYi ) - (l/n) ZxiEYi
r 1

1/2(.(Xi_- ) 2(yi_~)Z ) /2

Nonparametric rank correlation coefficient is found by the same pro-

cedures except that the actual values of xi and yi are replaced by

their respective ranks among each x and y.

This method is also called Spearman's rank correlation test. If

the coefficient is less than a predetermined threshold C, the

hypothesis Ho that the two channels are not correlated is accepted.

If r exceeds C, then the alternative H 1 of dependence is accepted.

The ARE of this rank correlation technique is known to be 0.91 with

respect to ordinary linear sample correlation methods if the sample

distributions are Gaussian. The ARE can be greater than unity if the

distributions are not Gaussian [1].

b. Polarity coincidence correlation

If only the polarities of each sample-pair are examined for a

test, the least complicated method is available. The total number

of points (xi,Y
i
) which fall in the first and third quadrants of the

n
x-y plane can be written in the form E U(xi,yi).

i=l 



29

This polarity coincidence correlator decides that a signal is present

when the above value exceeds a threshold. The ARE of this test is shown

to be 0.202 for Gaussian distribution with respect to optimal detector.

As usual, the threshold should be set at an appropriate level which

conforms to significant correlation between the two channels.

5. Briefs on nonparametric methods

Nonparametric methods for the one and two input cases were review-

ed. Even though the practical usefulness of ARE is not yet thoroughly

investigated, the nonparametric methods have very good relative

efficiencies for distributions other than Gaussian. For' nonparametric

methods, the probability of making an error of one kind can be preset

to a value no matter what distribution forms the random variable has,

and just a few general assumptions are necessary to proceed. The

assumptions are: (1) continuous distribution over a range of the

variable, (2) different median of each class, and (3) symmetrical

distribution for signed-rank test.

The sequential method has also been considered. The sequential

distribution of ranks has a one-to-one correspondence with the ordered

measurements. Hence, assuming the Lehmann's alternative, the

probability of any order of sequential rank vector can be calculated.
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CHAPTER III

BASIC PERFORMANCE COMPARISONS

The comparisons of the performance of parametric and nonparametric

methods described earlier are made in this chapter. For ease in

analysis of these methods the performance of the Bayes' classifier is

used as a reference. Random variables of known probability density

functions are used as corrupting noise. The pdf's used are the Gaussian,

two-sided exponential or Laplacian and the Rayleigh distributions.

Only the two-class problem is investigated using the algorithms

discussed in Chapter II. The generalization of the two-class problem

into a multi-class one is done in Chapter IV. The signed-rank and sign

tests are employed extensively. K-class algorithm [39], which is one

of the nonparametric methods developed recently, is also used. The use

of the K-class algorithm was made possible by a subroutine supplied by

G. Nelson of the Electrical Engineering Department and the Remote

Sensing Institute of South Dakota State University.

To perform computer simulations of the different methods, a random

sequence of signals and random noises of known distributions were

generated according to the procedures discussed next.

A. Generations of Random Signals and Noises

1. Random signals

The computer subroutine RANDU is used to generate 512 uniformly

distributed random variables from 0 to 1. The reason for choosing this

512 is that it is large enough to give consistent error probabilities

for each algorithm and is not too large to process by computer.
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Since this is only a two-class problem, signal zero is assigned if the

uniform random variable has a value lower than one-half and signal one

is assigned if the variable is greater than one-half. Because the

distributions are uniform, the a priori probabilities of signal zero

and one occurring are equal to one-half. In analogy to the communica-

tion's problem, zero may represent that there is not a signal present,

while a one indicates the presence of a signal with unit amplitude.

For each signal of zero or one, sixteen samples are taken and corrupted

by independent noises. The problem is to determine whether the signal

was originally zero or one, using different algorithms. When Laplacian

and Rayleigh distribution noises are used, sample sizes of four and

eight are used additionally to investigate the effects of the sample

sizes on the probability of error.

2. Random noises

Three general approaches to numerical generation of random

variables with a given distribution are available. The so-called

inverse transform technique is the easiest one to work with if the

cumulative distribution function F(x) of the random variable is known.

Since any cumulative distribution function is defined over the range

of zero to one and a uniformly distributed random variable r can be

generated over the same range by using the subroutine RANDU, r may be

set to equal to F(x). For every r there is a unique x which is

calculated by taking the inverse transform of the cumulative distri-

bution function or x=F (r). As r is a uniform random variable and

f(x) is the derivative of F(x), x is the desired value of the random
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variable with the specified pdf f(x).

Mathematically,

r = F(x) =f f(x) dx
__o

and F(x) = p(x'<x) = p[r<F(x)] = p[F-l(r)<x]

hence, x = F-l(r) is the random variable with density function of f(x).

The above procedure is applied very easily to a two-sided exponen-

tial distribution f(x) = (c/2) exp(-c Ixl) whose cumulative distribution

function is

1-1/2 exp(-cx) if x > 0
1/2 exp(cx) if x < O

Since positive values of x correspond to 0.5 < r < 1.0, and negative x

to O < r < 0.5, x is determined from each r as

r = 1-1/2 exp(-cx)+x = (-l/c) ln(2-2r) for 0.5 < r < 1.0

and r = 1/2 exp(cx) -x = (l/c) ln(2r) for 0 < r < 0.5

Random variable with Rayleigh distribution can also be found

through the same procedures. The density function has the form

f(x) = (x/a2 ) exp(-x2 /2a2), x > 0 and the cumulative distribution

function is F(x) =1 - exp(-x2 /2a 2) as seen in Figure 3-1. Since there

is a unique x for every random variable r with uniform distribution

over the range zero to one such that r=l-exp(-x2 /2a2), then

x = {2o2ln(1-r}
1

/
2

Gaussian random variables are generated by use of the subprogram

GAUSS which utilizes the central limit theorem with twelve variables

which are independent and identically distributed. In this subroutine

subprogram, random variables generated by RANDU with uniform
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f(x)

1 e /2
a

2a

a x

a. Density Function

F(x)

1.0

1 - exp(-2 - )

0.39 -

xI

b. Cumulative Distribution Function

Figure 3-7. Rayleigh distribution
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distribution from zero to one are used.

B. Gaussian Distribution Case

The first simulation problem is executed with Gaussian noise

case. To check the effect of the signal-to-noise ratio, five separate

experiments with different mean values of signal one were used with a

fixed value of variance. In other words, the distribution of signal

zero has a mean value of zero and variance of one while signal one

has mean values of 0.3, 0.5, 0.75, 1.0 and 1.25, respectively, for

different experiments with the same variance. To each of 16 fixed mean

values from whether a signal zero or one, statistically independent

Gaussian noise with mean zero and variance one is added. Hence, for

sample one the mean value increases to a value larger than zero. The

case of correlated noise might have been studied here but it is avoided

to concentrate only on the problem of comparing nonparametric methods

to the parametric methods.

As the noise distributions are all independent and identical with

each other, the optimal Bayes' decision is achieved by taking the sum

of 16 observed values and comparing it to a threshold, which is

determined by the following way. If the risk for making a decision

in one class is the same as that of the other class, and the a priori

probability is also the same in both classes, then the threshold is

found from

f(x/Ho) 16 16

x/H) = 1, or i f(xi/H0 ) i= f(xi/HI)
f(-/H 1) i=l i=l

With independent and identical distribution for each variable, the
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above can be reduced to linear form as in Chapter II, or

xl + x2 + ... + xl6= 8.0 if the signal one has mean value of one.

Hence, for the sum which is less than eight, signal zero is assigned,

otherwise signal one is assigned.

The nonparametric signed-rank test and sign test for the one-

input case are also applied. As it was seen in Chapter II, the

positive or negative rank sum for signed-rank test is a random variable

whose range is from 0 to 136 = 16(16+1)/2. This is readily understood

because there are sixteen ranks from 1 to 16 according to the absolute

values of observations and the signs attached to the ranks are the

signs of original observations which are random in character. When

signal zero is present, there will be almost equal probabilities of

observing either negative or positive signs. But when signal one is

present, the probability of observing positive signs will increase in

accordance with the increase of mean value, making the sum of positive

ranks more than that of the negative ranks.

For a large number of samples, say n > 12, distribution of signed-

rank sums for signal zero can be approximated by Gaussian with mean

p = n(n+l)/4, and variance 02= n(n+l)(2n+l)/24. For the sample size

16 used in this experiment, P = 68 and o2 = 374. The threshold for

this test is determined next. As an example, to make the 0-error

probability less than 5 percent, which is also the significance level

of the hypothesis testing that a distribution is significantly different

from the null distribution, the threshold C should be such that F(C) =

0.950. F(x) is the cumulative distribution function of Gaussian case.
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From the table of the cumulative distribution function of Gaussian

pdf the following values were determined.

F(z) = 0.950-*z=1.64 where V=O and a2=l

To calculate the value of the threshold C, set (C-P)/o equal to 1.64.

Then the value of C is 99.6.

Since the rank sum is an integer variable, the C should also take

the form of integer. The nearest integer number to make the specified

a-error probability is 100, which is the threshold value C. If the

rank sum of positive signs is equal to or less than 100, signal zero

is assumed to be present within 5 per cent of error probability. If

the signed-rank sum is more than 100, signal one is present.

The sign test provides an easier arithmetic manipulation than the

signed-rank test. Since the distribution of the number of positive

signs or negative signs for signal zero is binomial, a threshold can be

found from a binomial distribution table or by using Gaussian approxi-a

mations for a large number of samples. For the approximation, the

mean value is determined as p = np and the variance as a2 =npq.

The number of either sign has only an integer value which ranges

from 0 to n and the threshold is also discrete within this range. There

are only (n+l) possible threshold values. The threshold cannot be

adjusted to a value which is a non-integer number to make significance

level of the test arbitrary. The threshold for each signal level is

determined according to the criteria discussed, and their values are

given in Table III-1.
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Table III-1 Thresholds for each test

Signal level
Algorithm \ 0.3 0.5 0.75 1.0 1.25

Bayes' Optimal 2.4 4.0 6.0 8.0 10.0

Signed-rank 78.0 85.0 93.0 103.0 108.0

Sign test 9.0 9.0 10.0 10.0 10.0

The significance levels or a-error probabilities of the signed-

rank test are set approximately at those of the calculated values of

Bayes' classifier because the two classifiers are expected to perform

equally well. This is expected since the ARE of the signed-rank test

with respect to the Bayes is nearly one. For the sign test, the error

probabilities are set at the nearest higher discrete value above the

error probabilities of signed-rank test with the same conditions since

the sign sum has only a discrete integer value from 0 to n.

The results of the computer simulation experiment are shown in

Figure 3-2. As it was expected, the signed-rank test compares very

well over the selected value of the mean difference between signal and

noise. It works better than the optimum Bayes' classifier for the mean

differences less than 0.75 and deteriorates a little beyond the mean

differences of one. This degradation of performance may be from the

fact that the a-error probabilities are predetermined and the error

probabilities do not change no matter which distribution condition is

used. The sign test has about five per cent more error probabilities

than the Bayes' result, but it still performs well. The K-class
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algorithm performed exceedingly well. The reason seems to be that

the test finds the optimized linear decision boundary without regarding

any statistical distributions and that the complete data sets generated

are used to train the algorithm. Additional computer simulation

experiments on data not used to train the K-class classifier are

necessary. It is important to note that the noise distributions simulat-

ed by computer are not pure Gaussian because only twelve uniformly

distributed random variables are used to give a Gaussian variate.

The error probability ratios of Bayes' algorithm with respect to

the nonparametric methods are given in Figure 3-3. The ratio is not

the direct value of ARE but it gives the idea of how the nonparametric

methods are working for different mean values. The figure shows that

nonparametric method is more useful for small signal-to-noise ratio less

than one. Since the absolute value of error probabilities for mean

values greater than one is very small for either the signed-rank method

or the sign test, the deteriorations of error probability curves do

not necessarily mean that the nonparametric methods are impracticable.

To check the validity of these simulation experiments, theoretical

error probabilities for Gaussian distribution case are calculated and

compared to the values obtained from the experiment. When the a priori

probability of each signal occurrence is equal to that of the other

signal and each signal is uncorrelated, the average probability of

error is, for Bayes' classifier,

Pe = 1/2[1-erf(p/20)]

which can be readily calculated by use of a table or by computer

program written to calculate the probability of error. These calculated
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values are compared to the experimental values in Figure 3-4. Since

differences of these two sets of error probabilities are in the range

of less than 3 per cent, it seems to be a reasonable conclusion that

the simulation experiments are quite practical to evaluate the perform-

ance of these algorithms, so far as the Gaussian distribution is con-

cerned.

Another point can also be mentioned. As it was noted before, a

nonparametric method does predetermine the error probability of any one

class. Table III-2 shows the predetermined and the resultant exPeri-

mental values of the a-error probabilities in this simulation problem.

It seems to be a general guide line to set the error probability of a

class at about the same or a little higher value than that of Baves'

optimal classifier if it is known. This is because the performance

of these methods is very close to each other. It is also found that

the overall probability of error is very much affected by the value

of the predetermined error probability of one class or the significance

level. This is also observed in other distribution cases. Experiments

on this phenomenon are performed with the Rayleigh distribution case.

Table III-2. Predetermined and experimental a-error

Mean value of

Algorithms 0.3 5 0.75 1.0

Predetermined 30 20 10 3.5 2.0

Signed-rank
test Experimental

Result 28.2 16.7 6

about about about about about

Predetermined 20 20 10 10 10

Experimental
Result 19.1 19.1 8.7 8.7 8.7
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Figure 3-4. Theoretical and experimental error probabilities of

Gaussian distribution (16 features)
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C. Two-sided Exponential Distribution Case

Following the same procedures which are described in Chapter II,

the two-sided exponentially distributed noises are generated and added

to a random sequence of signal zero and one. Three different sample

sizes of n=4, 8 and 16 are used for the five different mean values of

signal one. The mean value of signal zero is always fixed to the value

of zero. The five mean values of signal one are set equal to those of

the Gaussian distribution case. The threshold for Bayes' optimal detect-

or is determined by
n

f(x/Ho) i=l f(xi/Ho)

n
f(x/Hl) T f(xi/H1)

i=l

for independent and identical distribution of each random variable.

A priori probabilities and risks for making decisions are equal for

both signals. Or

exp[-k{ixll+lxx2l+...+lXnl-(Ixl-pll+lx2- 1ll+...+lXn-j1I)}] 1

where k is a constant.

The above is reduced to

Ixll+lx21+...+lXn -(lIx-ll+lx2-ll+...+lxn-ll) = 0
where the mean value of signal one is one. For a given set of data x,

if the above calculation exceeds zero, signal one is decided, otherwise

signal zero is decided.

Sign test and signed-rank test are applied as in the Gaussian noise

case. Only the predetermined error probabilities of class one are set

at a little higher value than that of Gaussian noise since greater
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error probabilities are expected because of the distribution shape.

In addition to the previous algorithms, the K-class algorithm and a

classifier which operates with the assumption that the distributions

are Gaussian are used.

The thresholds according to the number of samples and mean differ-

ences are calculated for different algorithms and are listed in Table

III-3. Of course, random variables such as signed-rank sums or sign

sums take on integar values only, but they are written in real type for

use in computer programs.

It is interesting to note that there are only five possible

thresholds for sample size of four, and nine possible thresholds to

choose from for a sample size of eight, in the sign test. Only (n+l)

integer values are available for threshold values for sample size of n.

Table III-3. Threshold for each sample size and mean difference

Signal level

0.3 0.5 0.7 1.0 1.25Alori thm 

Bayes' decision 4 0.6 1.0 1.5 2.0 2.5
with Gaussian 

assumption 8 1.2 2.0 3.0 4.0 5.0

16 2.4 4.0 6.0 8.0 10.0

Signed-rank 4 5.0 5.0 6.0 6.0 7.0
method

8 19.7 21.5 23.7 25.7 6.7

16 75.6 81.3 88.4 4.0 100.0

Sign 4 3.0 3.0 3.0 3.0 4.0
test

t8 5.0 5.0 5.0 6.0 6.0

16 9.0 9.0 10.0 10.0 10.0
_ __m 
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Mean Difference Between Signal and Noise

Figure 3.5.a. Error probabilities of different algorithms with

Laplacian distribution (4 features)
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Using the thresholds shown in Table III-3, performance tests are execut-

ed and the results are shown in Figures 3-5, a, b, c. In these experi-

ments the Bayes' optimal classifier performed best as it should do.

The other algorithms are close competitors. The signed-rank method

proved to be better than any other algorithm except the Bayes'. The

average error probabilities of each method for different sample sizes

are given in Table III-4.

Table III-4. Average error probabilities for each algorithm with

different sample sizes.

Algorithms Gaussian Signed-rank Sign

Assumption Method Test Bayes'

4 0.2783 0.2773 0.3754 0.2579

8 0.2335 0.2265 0.2511 0.1939

16 0.1621 0.1466 0.1544 0.1201

Because the K-class algorithm performs with irregularity in error

probability for different conditions of data, the average of the whole

may not give much meaning, hence is omitted in the table. The

expectation that the signed-rank test performs better than the algorithm

using the Gaussian assumption is justified for sample sizes larger than

four and mean difference less than one. It implies that the relative

efficiency is more than unity for the nonparametric signed-rank test

compared to the linear classifier; an agreement with the ARE value which

is more than unity for the two-sided exponential distribution case.

The sign test seems to be too difficult for small sample sizes.

However, for sample sizes of eight or more, it works almost as well
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(2)_ _ _ _ Signed-rank test

(3) _ Sign test
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Figure 3-5.b. Error probabilities of different algorithms with

Laplacian distribution (8 features)
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Figure 3-5.c. Error probabilities of different algorithms with Laplac-

ian distribution (16 features)
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as the others do. Some of the nonparametric thresholds could have been

adjusted to more appropriate values which give less probabilities of

error.

The K-class algorithm performed very well, again. It works better

than optimal classifiers in some occasions but with much more fluctuation

in error probabilities for different conditions. This irregularity

in performance is excessive for small sample size. The same fact was

seen in Gaussian and Rayleigh distribution cases. One of the reasons

is that the relatively small number of signals are used. Instead of

the 512 signals used for other algorithms, only 100 signals are used for

training and classification. Above all, it is interesting to see that

the performance of every algorithm becomes quite close with each other

as sample size increases.

It was observed through the experiments that, once the overall

probability of error is found for a certain predetermined threshold

(or the probability of error of one class), the same algorithm can

be repeatedly used to produce an asymptotic minimum error probability

using new thresholds which are set equal to the overall error

probability found from the former calculation. So, if a set of training

samples of known classes are given, the threshold which yields minimum

error probability for a nonparametric algorithm can be determined. The

minimum error occurs when the error probability of one class is the same

as the other class if the a priori probabilities of the two classes are

the same. This fact is considered more intensively in the Rayleigh

distribution case.
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Predetermined a-error probabilities of the nonparametric methods

and the experimental results are compared in the Table III-5. When

the sample sizes are small, the experimental results of error probabil-

ities are not in agreement with the predetermined values. They become

closer to predetermined values when the sample sizes increase. For

sample size of 16, the differences between the predetermined and the

resultant values are in the range of two to three per cent which is

also the range for Gaussian distribution case.

The trend of overall error probabilities of an algorithm with

respect to the sample sizes is considered in this experiment [Figure

3-6]. The sign test has the highest sensitivity to the changes of

sample sizes while the algorithm with the Gaussian assumption has

the least range of change. As it was mentioned before, the sign test

is very crude in its nature, hence it is very much dependent on the

number of samples available to classify. As a whole the signed-rank

method works better than linear classifier based on Gaussian assumption

and is very competitive with the optimal classifier. The sign test

is too crude to use for very small sample size but it is useful for

fairly large number-of samples. The sign test works almost as good

as any other classifier for sample size of 16.
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Figure 3-6. Relative changes of error probabilities in accordance

with sample sizes
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D. Rayleigh Distribution Case

Random variables with Rayleigh distribution are used as the last

case for comparison of performance. Different mode values for the two

classes of signals are used instead of the different mean values used

for exponential and Gaussian distribution cases. Three different mode

values of 01 = 0.7, 0.8, 0.9 are used for signal one while a fixed value

of mode aO = 1.0 is used for signal zero. Three different sample sizes

are used as before. The sample sizes used are n = 4, 8 and 16. Thresh-

olds for different algorithms are decided as follows.

The Bayes' optimal threshold is determined as

n

f(x/H0 ) i=l f(xi/Ho )

n
f(x/H ) T f(x./H )

i=l

if the a priori probability of each class occurring is the same as the

other and the risk of making a decision is the same for all signals.

Independent and identical distributions of samples are assumed.

The resulting classifier decision rule is

n 2 2

I Xi - 4n( 2 ) in(ao/ao) = 0
i=l 0 1

If the calculation of the above for a given x exceeds zero, signal zero

is determined. Otherwise, signal one is determined. The threshold

for Bayes' decision with the assumption that the distributions are

Gaussian is found from the quadratic form of
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(1/2N -1/2N0)jx? + (m0/N0 -ml/N1 )Jx
i

+ (n/2)(ml/N
l- mO/N0)

- (n/2) ln(Nl/N2) = 0

where mi and Ni are the mean and variance of the corresponding Rayleigh

distribution. For x which makes the above calculation more than zero,

signal zero is decided. Otherwise, signal one is assigned. For the

Rayleigh distribution with the pdf f(x) = (x/a2 ) exp(-x2 /2a2 ), the

expected value (mean value) m = a(H/2)A = 1.253a and the variance

N = a2 (4 - 1)/2 = 0.4292a, respectively [34].

Nonparametric signed-rank test which was used for Gaussian or

exponential distribution case cannot be used without losing efficiency

when the pdf is Rayleigh. The reason is that the signed-rank test is

based on the assumption of symmetric distribution of the signal 0

such that f(x
i
) = f(-xi). For the Rayleigh distribution, the condition

can not be met by a linear transformation. The sign test on the other

hand, can still be adopted as before by shifting the pdf to satisfy

the condition F(O) = 1/2.

Nonlinear ranking for the signed-rank method may be adopted for

this circumstance. Instead of the usual ranking procedures a trans-

formation of data is used to result in a symmetric or near symmetric

distribution. However, the transformation of data requires complete

distribution information which is not appropriate in the use of

nonparametric methods.

Considering the difficulties of using signed-rank method in this

experiment, two-input case sign and signed-rank methods are also used

by generating independent noise channel data. Results of the experiments
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which include the Bayes' optimal classifier, Baves' classifier with

Gaussian assumption, signed-rank test, sign test and K-class algorithm

are given in Figures 3-7, a, b, c, and the experiments for the two-

input channel sign and signed-rank test are compared in Figure 3-8.

The signed-rank test does not perform as well as the optimal test

in this distribution case. The reason is as stated in page 54. Sign

test which is already known to be too crude for small numbers of samples

displayed itself again as a poor classifier. For the sample sizes

four and eight, it resulted in error probabilities which are too large

for practical use compared to other classifiers. Sign and signed-rank

test applied for two-input case also give large error orobabilities

compared to the optimal classifier. The classifier based on the

assumption of Gaussian distribution works very good over the entire

range of experimental conditions. There is very little advantage

to use the optimal classifier instead of adopting the Gaussian assumption

since there is less than one percent of error probability difference

on the average by using the optimal classifier. The reason for this

extraordinary performance of the classifier based on the Gaussian

assumption seems to be that the Rayleigh distribution becomes similar

to the Gaussian as the mode value increases.

As in the other experiments already seen, the K-class algorithm

works good in most of the varied circumstances. This algorithm seems

a little inferior to the optimal classifier for relatively large signal

separation (mode value difference) but it works better than any other

algorithm for small signal separations. Irregular change of error

probabilities for different data conditions like sample sizes and
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Figure 3-7.a. Error probabilities of different algorithms with

Rayleigh distribution (4 features)
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Figure 3-7.c. Error probabilities of different algorithms with

Rayleigh distribution (16 features)
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Figure 3-8. Two-input nonparametric tests of Rayleigh distribution.
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signal-to-noise ratios is observed again as in the previous experiments.

One of the reasons for this irregularity is that fewer signals are

used in this K-class algorithm than in the other algorithms.

In general, nonparametric methods seem to be inferior to parametric

methods for the Rayleigh distribution. Only for large sample sizes,

say n = 16, and small signal-to-noise ratio their usefulness

predominates.

One concept is worth noting. Nonparametric methods seem to be

less sensitive to the sample sizes and signal level differences. The

relative changes in error probabilities of Bayes' optimal classifier

and the nonparametric methods for different mode values are seen in

Figure 3-9. The relative changes of error probabilities on the average

for different mode values have the least slope for sign test while the

algorithm with Gaussian assumption has the steepest slope of all.

Though it does not necessarily imply the usefulness of nonparametric

tests, the robustness does show that sign test or signed-rank test is

viable for an algorithm with other small signal-to-noise ratio situa-

tions. It was emphasized several times before that the overall

probability of error of a nonparametric algorithm is dependent on the

predetermined error probability of one class. For the Rayleigh

distribution, tests were run to observe the actual behavior of the

error probabilities according to the changes of threshold values

which determine a-error probabilities. Two mode values o1=0.7 and

0.9 are assigned to the distributions of class one while class zero
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Figure 3-9. Relative changes in error probabilities for different
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has a fixed mode value of ao=l.O. A sample size of 16 is used in both

signed-rank and sign tests. Results are shown in Figures 3-10.a, b, c.

In the figures it is noticed that the minimum overall error probabilities

occur at or near the thresholds at which both a and S-error probabilities

become equal. This phenomenon is more apparent when the difference of

mode values of both classes is larger. The discrepancy of having

a minimum error probability at a threshold value other than that which

makes the a and B-error equal in the Figure 3-10.d may be eliminated by

using a larger number of samples.

E. Complexity of Calculation of Each Algorithm

The complexity of calculation for the specified algorithm is

one of the most important factors in the practical application. Each

algorithm has a unique process of data treatment. It is compared to

other algorithms for its requirements on calculations in this section.

A nonparametric sign test needs only n comparisons of signs and

n summing operations on integer numbers for n input data. It also

needs only a couple of memory cells for a threshold and a summed

integer number of signs. This is the least complex algorithm of all.

The signed rank method should rank the absolute values of n

observed data and take the sum of ranks of positive observations, hence,

it requires n operations of taking absolute values, n(n+l)/2 comparison

steps for ranking and n comparisons of signs and n summing operations.

This requires at least 2n plus a few memory cells. Apparently signed-

rank method takes much more time for data processing than the sign test

and a linear classifier do but it has no multiplication or division
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operations which are present in some other classifiers.

A linear classifier which is based on independent and identical

Gaussian noise needs essentially n summing and one thresholding opera-

tion to make a decision on n observed data. Only a counle of memory

cells are necessary. Of course, the variances of both classes are

assumed same. If the variances differ from each other, the optimal

classifier should perform n multiplication and 2n summations in addition

to a few thresholding operations. The multiplication takes much more

time than adding, subtracting or comparing a set of data. For the data

with two-sided exponential distribution, 2n summations, n subtractions

and 2n absolute values are necessary to make a decision. A few memory

cells are required. If the data is Rayleigh distributed, n summations

and n multiplications on input data and one threshold operation is

necessary for the optimal decision. The memory storage required is

small. The above is summarized in Table III-6.

Table III-6. Calculations involved in each algorithm

Algorithms Addi- Subtrac- Compari- Multipli- Absolute Memory
tion tion son cation value required

Silg test n 0 n 0 0 less than 3

Signed-rank 0 n n(n+l) n 2n + a few
l - _ _ _ _ 2

Gaussian
0 equal
P vrne n 0 0 0 ° 0 less than 3

T Gaussian
I differen 2n 0 0 n 0 less than 1C
T variance 
Aless than 5
L Laplacian 2n n 0 0 0 2n less than 5

Rayleigh n 0 0 n 0 less than 3
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F. Summary of the Chapter

The performances of nonparametric classifiers and Bayes' parametric

optimal classifier are compared. The Gaussian assumption and the K-

class algorithms are also used for additional comparisons. These methods

are applied to the noise distributions of the form of Gaussian, two-

sided exponential or Laplacian and Rayleigh.

Nonparametric methods work very well for Gaussian and Laplacian

distribution cases. Even the sign test has more efficiency than the

linear classifier for relatively large samples like n = eight and more

when the distribution is Laplacian. However, these nonparametric tests

give considerably larger error probabilities for the Rayleigh distribu-

tion case, where the distributions are not symmetrical. This requirement

of symmetric distribution seems to be the major disadvantage of the

nonparametric signed-rank test.

Two-input nonparametric methods generally failed. Even more, it

requires two independent input channels which are not easy to find in a

-practical situation.

As a whole, the nonparametric sign test looks attractive as an

algorithm when the sipnal-to-noise ratio is very small and there are

enough samples. Sample sizes of more than four are needed for satis-

factory results. The signed-rank method is also very useful for the

symmetrical distributions. However, the calculation complexity of this

test increases rapidly as sample size increases and is not favorable

compared to the linear classifier. The linear classifier which is

based on the Gaussian distribution assumption works well for most of
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the experiments producing consistent results which are comparable

to optimal classifier's.

The nonparametric threshold which gives an asymptotic minimum error

probability can be found by repeated adjustment of thresholds if a set

of sample vectors of known classes is given.

The ARE of a nonparametric method may not be a general performance

index since the actual efficiency of one method compared to the other

is changing because of the different signal-to-noise ratio and the num-

ber of samples. But it still gives a very good idea of the relative

performance of the algorithms.

The limitations using the nonparametric methods are the requirements

on the data distributions such as: the statistical independence between

each data, the identical distribution of each other and the continuous

and symmetrical distribution of the variables. Symmetric condition is

required especially for the signed-rank method.

The multivariate, multi-class problem is considered in Chapter IV.
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CHAPTER IV

APPLICATIONS TO THE MULTI-CLASS PROBLEMS

Throughout previous chapters only the univariate, two-class problems

are considered. In the practical pattern recognition problems, however,

the general nature of input data are multivariate and the decision-

making is usually multi-class conditioned. The generalization of the

two-class problem into a multi-class, multivariate problem is considered

in this chapter.

Since the nonparametric methods already discussed in univariate

cases have inherent limitations like independent sampling of data and

symmetrical distributions for each class in case of the signed-rank

test, there must be modifications of the nonparametric methods to apply

the methods to multi-class and multivariate situations.

For clarity of understanding the problems, the multi-class,

multivariate problems are grouped into several categories according

to the nature of the variable: (1) univariate, multi-class case, (2)

multivariate, two-class case, (3) multivariate, multi-class case. They

are discussed in the following sections.

A. Univariate, Multi-class Problems

Since the nonparametric method essentially tests a composite

hypothesis, i.e., it merely tests whether the null hypothesis is true

or not, this method needs at most k independent statistical tests for

k different classes. If the data are from univariate distribution,

the methods used in the two-class problems can be applied in a

repetitive way to the multi-class problems.
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1. Sign test

This test is applicable when the conditions required in the two-

class problems are satisfied. They are the continuity of distributions

over the range and the differences in the median values of the k

different classes. The data obtained should be independent of each

other. Let ml...'- k be the median vectors of each of k classes, and

x be the measurement vector with n observations. The two-class sign

test is applied for each pair of x - ml; i=l, 2,...,k. If the x

has been from the j-th class, the number of the positive and negative

signs would be almost equal for the data x - m.. For the rest of the

classes the value x - m.; i a j, would show a larger number of positive

or negative signs than the number of opposite signs. So, after deter-

mining positive and negative signs of each of k different data sets,

x - mi; i=l,...,k, the vector x is assigned to the class at which the

difference of numbers between positive and negative signs is the

minimum. Naturally occasions when there are more than one class which

yield the same minimum difference in numbers of positive and negative

signs may happen especially for small number of observations. There

seems to be no way out of this confusion. Hence, a sufficiently large

number of observations is necessary for this test.

2. Signed-rank test

This test is also the direct generalization of the two-class

signed-rank test, and is sensitive to the differences in mean values

between the classes of symmetrical distributions. Let there be k

classes as before and let x be the measurement vector of n observations.

Assume Pi, P-a to be the mean vectors of the k different classes.
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The test then follows the procedures described in two-class problem

for each of x - p.; i=l,...,k, data sets. For example, at the j-th

test, find the difference of x - p. and find the rank of each element

in increasing order of absolute magnitude of the difference. If the

sample x is from the j-th class, the fundamental conditions of indepen-

dent samples are insuring that the sum of ranks from positive differ-

ences will be about equal to the sum of ranks from negative differences.

So, after determining positive and negative signed-rank sums of each

of k-tests, the data set x is assigned to the class for which the rank

sum of negative differences is closest to that of positive differences.

The test may be terminated before k steps are taken. During the

test, the data set x may be assigned to the class at which the signed-

rank sum is within a certain significance level, which can be deter-

mined through the same way used in a two-class problem.

3. Rank sum test

Compared to the sign test, the signed-rank test is much more

efficient as it was seen in two-class problems but it imposes a serious

restriction which is that the data distributions are symmetrical. It

is thus necessary to adopt an algorithm which is more general than

those discussed. The rank sum test is used instead for testing the

differences in mean values of different classes whose distributions

need not be symmetrical but identical in shapes for all classes.

As in the two-class problems, rank sum test can be used for

relatively general hypothesis testing but it needs additional

independent data sets which represent k different classes. The two-

class rank sum tests are executed in turn to the k paired sets of
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data; x and the sample vector of each class. By the same reason

stated in the two-class problem, the rank sum of the observed vector

x will be distributed in a statistically fixed form for the null

hypothesis that the data are from the j-th class. Instead of only one

null hypothesis of the two-class problem, there are k independent null

hypotheses for the multi-class problem.

Using the fixed distribution function determined from the null

hypotheses, all the k rank sums are checked correspondingly to get the

probabilities of these sums occurring. The data set x is assigned to

the j-th class if the probability of the j-th rank sum is the largest.

B. Multivariate, Two-class Problems

Before proceeding to the multivariate multi-class problem, it seems

necessary to consider the multivariate two-class problems to see the

nature of the multivariate case. Let x = {xl,...x
n
} be the observation

vector from one channel and v = {yl ,...,Yn) from another. The multi-

variate two-class rank sum test can be annlied for this case. In the

previous example of univariate data x, y, where all of the x.i's and

v.'s are identical and independent, the nonparametric rank sum method

makes use of the ranks of the combined data to test the null hypnothesis

that the two data sets are from the same distribution against the

alternative that they are not. The test essentially is based on the

numb ers os, MI -,...Mn where M
i

is the number of y's faling between

the i-th and (i+l)st ordered x's. When the observations x's and V's

are from multivariate distributions then the number Mi
which gives

precise statistical equivalence to the univariate situation is not

readily decided. First there must be determined the hvnerplane blocks
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[23] which are the multivariate analogy to the univariate regions between

the ordered xi's. A deeper study in determining blocks is called for but

it is not tried in this work. Once the equivalent blocks are found,

the procedures of handling the rank data remain to be the same as

those of univariate two-class problems.

C. Multivariate, Multi-class Problems

Most of the multi-class problems discussed in some publications

[1], [23] test the null hypothesis that all of the k sets of data are

from the same distribution against the alternative that there is

significantly different distribution in data. Since this hypothesis

testing is not sufficient for identifying each of k-classes, a different

algorithm must be developed.

One possible way to treat this problem seems to be to apply the

multivariate, two-class algorithms to x, the observed data, k times

with k different sets of samples, each sample representing the typical

distribution of one of k classes. Eventually k different probabilities

which are the probabilities of x being from each of the k classes will

be obtained. x is then assigned to the class for which the probability

obtained is the highest.

This multivariate, multi-class problem is very difficult to treat

and the above suggestion must be proven in practical circumstances.

D. Summary of the Chapter

A univariate multi-class problem is mainly considered in this

chapter. Repetitive applications of two-class algorithms accomplish

the job. If the problem is multivariate, the transformation of

multivariate data to univariate data is necessary. Finding the blocks,
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which are statistically equivalent to the regions bounded by ordered

x's in univariate case is the main problem. This area needs more study.

The most general case, multivariate multi-class problem, might be

solved by repetitive use of multivariate two-class algorithm, but no

attempt is made to simulate the problem since this gets too involved

and the merit of nonparametric methods will be lost in the complexity

of calculations. Many problems may be solved more easily and

practically assuming univariate situations.



76

CHAPTER V

CONCLUSIONS

A. Summary

The nonparametric methods were compared to the optimal parametric

classifiers and the K-class algorithm. The nonparametric methods

performed very competitively for most of the conditions subjected with

some exceptions. They worked especially good when the sample sizes.

were large.

The signed-rank test was almost as good as, and sometimes better

than the optimal classifier but the test needs somewhat higher com-

plexity of calculations compared to parametric tests for the density

functions studied. This disadvantage may be excused when the distribu-

tions are not simply Gaussian, Laplacian or Rayleigh's where ordinary

optimal classifiers need simple calculation steps. Nonparametric

methods, however, have fixed procedures that do not vary with the dis-

tribution shape. Another significant drawback of the signed-rank test

is its requirement of symmetric data distribution of each class. Since

this requirement is hard to be satisfied in practice, symmetric condi-

tions may be assumed at the expense of the efficiency of the test as it

was done in the Rayleigh distribution case.

When the sample size is large and fast data processing is necessary,

the sign test is a very useful method. This sign test needs only a few

simple integer arithmetic operations for data processing and its

efficiency is good for most of the distributions. A mixed statistical

test which employs both signed-rank and sign test looks attractive as

the simplicity of sign test is combined with the efficiency of signed-
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rank test and the compromise between the two is made.

Tests with two-input channels seemed to be too inefficient for

practical use. The rank sum test is identical to the signed-rank test

if the distributions of the variables are symmetrical. This test is

sensitive to the differences of medians in two identically or symmetri-

cally distributed data. One major demerit of this test is that it

requires independent input channels. The above were observed through

the results of simulations by computer and were depicted in figures of

Chapter III.

The ARE does not give a direct efficiency of an algorithm for

different sample sizes and signal-to-noise ratios, but it still shows

the relative figure of merit at large of one classifier to another.

The optimal nonparametric thresholds were determined by taking

those for which the a- and a-error probabilities of the two classes

are the same. This phsncenon was also experimentally seen in Chapter

III.

It was observed that the K-class algorithm competed very well among

other algorithms but the distributions had to be unimodal to be

efficient in classification.

The generalization of the univariate, two-class problems into the

multivariate, multi-class problem was considered. The univariate,

multi-class problem was solved by repeated applications of the uni-

variate, two-class algorithms. For the most general case, the

multivariate, multi-class problems, no specific conclusion was able
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to be drawn.

B. Suggestions for Further Study

There are five most imminent areas of research to be done. First

of all, the applications of the nonparametric methods to the real data

obtained from the photographic imagery are desired to verify the practi-

cal usefulness of the methods. A univariate, multi-class algorithm may

be used with reasonable assumptions. Nonlinear ranking techniques, in

the case of nonsymmetric distribution, need to be investigated further

as the second research area. This technique is necessary to employ

the high efficiency of the signed-rank test for nonsymmetric data

distributions.

The third research area includes the determination of optimal

threshold for nonparametric methods when the a priori probabilities

of the two classes are different. The efficiency of the K-class

algorithm using the data which are not used to train the algorithm

should be investigated for more direct comparisons with other methods.

The last research area is to investigate more on the multivariate,

multi-class problems. The determination of blocks, which is in

analogy to the regions of ordered univariate data, should be studied.
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GLOSSARY OF TERMS

x Random variable.

x A random vector with n elements. The underline specifies

a column vector.

X(m) A set of m random vectors x. A (m,n) matrix is implied.

f(x) Probability density function (pdf) of a random variable x.

F(x) Cumulative distribution function (cdf) of a random variable x.

y, y Same as x, x except that these are input from different

channels.

Expected value (or mean value) of a random variable.

Subscript represents i-th class.

o. 2 Variance or a central moment of a random variable of i-th

class.

Variance and co-variance matrix for multi-class case.

x7~ Sample mean.

s2 Sample variance.

H0 Null hypothesis that noise only is present in the input

channel of a classifier.

H1 Alternative hypothesis. Signal is assumed to be present

in the input.

a The error of the first kind, or the probability of mis-

classifying a set of data as class 1 while the data are

actually from class O. Equivalent to the probability of

falsely rejecting Ho.

The error probability of the second kind, or the probability

of misclassifying a set of data into class 0 while the data
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are actually from class 1. Equivalent to the probability

of falsely rejecting H1.

p(i) A priori probability of class i.

L(x) Likelihood ratio.

K. Cost of making a decision of the i-th class.

erf(x) Error function of x.

C Threshold for a classifying algorithm.

r A rank of an observation x among the set of absolute

xi's in increasing order.

r A vector composed of r.

g(x) Decision function (discriminant function)

p(x) Probability density function of x. This is the same

expression as f(x), but p(x) is used mainly in the

parametric case.

el 2 A relative efficiency of a method 2 compared to another

method 1.

ARE1,2 An asymptotic relative efficiency of a method 2 compared

to another method 1.

The arrow is used for either one of the words or the set

of words: implies, is concluded as, or if...then .
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APPENDIX A

REDUCTION OF A QUADRATIC FORM TO A LINEAR FORM

For the multivariate Gaussian noise which is added to the dc

signal, the quadratic form which is the logarithm of the likelihood

ratio can be reduced to a linear form by applying summation calculation,

without knowing the characteristics of quadratic form. This, of course,

is possible when the distribution functions have the same covariances

0,:=L==

By definition,

and

T n

i

n

~(X- )T 1(x-1)=i

i

n

[(x.-n 0i)( )o

n

.(xi.-li) (Xj-i j )°J ij
]~ .C

Then,
n n

i ij x i° i

- (xi-1i )(xj-li j)J 1 ]

I I I i 1 i i i.X

+xil j + xj 1i-1 1 1 li Pj) Cij
1i ] j j]

1 n n
=-T [j- ) +(1 i i) X.

i j I I
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+P ilOj-Plil j ]aij

n n n n

-I I xi(0j-~ )C 2 i I (.0i .0j-1,i Pj)Cr
j I 13 ij ij

Since the last term of the above equation is a constant for any x,

ln L(x) = Tx -I(? -pi) + constant which is a linear polyromial. The

constant value is sometimes called the bias.
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APPENDIX B

ESTIMATION OF PARAMETERS USING REPETITIVE CALCULATIONS

The likelihood ratio test of the two distributions without any

parameter value given but only with the sample vectors of known classes

encounters the problem of estimating the parameters by the use of given

sample vectors. Then the likelihood ratio is

L(x) = f(x/X°(m),H0 )

f(x/Xl(m),H 
1
)

where X (i) = xi(l),...xi(m)1, i=0,l which is the set of m sample

vectors of class i. However, the numerator and denominator can be

written as

f[x/Xi(m),Hi ] = f f(x/Q,H.) f[O/Xi(m),H.]dO

The determination of f[O/Xi(m),Hi
] is the main problem which is solved

in a repetitive way, shown below.

From the Bayes' theorem (not Bayes' criterion)

f[O/X(m)] f(X(m)/O] f(e) where
Jf f[X(m)/0] f(O)dO
-OO

the condition Hi and superscript i of X are omitted for convenience.

But f[X(m)/O] = f[X(m)-O]
f(0)

-= f() [f(x(l),x(2),...,xm(m), ]

f[x(m )/x (),... ,x(m-1) ,] f[8,x(1),..,x(m-) ]
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f(O) f[x(m)/X(m-l),0] f[O/X(m-l)] f[X(m-l)]

where X(m-l) = {x(l),...,x(m-l)}

Hence,

1 f[/x(m)/X(m-1),O] f[e/X(m-l)] f(O) f[X(m-l)]

f f(0)
fOXm f[x(m)/X(m-=),0] f[0X(m-l)] f[X(m-l)] dO

_ ff[x_ .(m)/X(m-l),O] f[ O/X(m-l)] fiX(m-l)] dO

f[x(m)/X(m-1),0] f[O/X(m-l)] fiX(m-l)]
0o

f[X(m-l)] f f[x(m)/X(m-l),O] f[O/X(m-l)]dO

f[x(m)/X(m-1) ,0] f[O/X(m-l)]

f f[x(m)/X(m-l),O] f[O/X(m-l)]dO

f(x(m)/O) f[O/X(m-l)]

f f[x(m)/,-)] f[O/X(m-l)]dO

Here

f[x(m)/X(m-l),O] is put equal to f[x(m)/O] because of conditional

independence.

The last term is the desired repetitive form to be used for the

calculation of f[O/Xi(m),Hi ] of the likelihood ratio test.



85

BIBLIOGRAPHY

A. On Nonparametric Algorithms

(1) Bradley, J. V., Distribution-free Statistical Tests, Englewood

Cliffs, N.J.: Prentice-Hall, Inc., pp.96-114, 129-134, 1968.

(2) Carlyle, J. W. and J. B. Thomas, "On Nonparametric Signal Detect-

ors", IEEE Trans. on Information Theory, Vol. IT-10, No. 2,

pp.146-152, April 1964.

(3) Chadwick, H. D. and L. Kurz, "Two Sequential Nonparametric

Detection Procedures", Report TR 400-155, Department of Electrical

Engineering, New York University, New York: March 1967.

(4) Daly, R. F. and C. K. Rushforth, "Nonparametric Detection of a

Signal of Known Form in Additive Noise", IEEE Trans. on Information

Theory, Vol IT-11, No.1, pp.70-76, January 1965.

(5) Feustel, E. A. and L. D. Davisson, "The Asumptotic Relative

Efficiency of Mixed Statistical Tests", IEEE Trans. on Information

Theory, Vol. IT-13, No. 2, pp.247-255, April 1967.

(6) Fralick, S. C. and R. W. Scott, "Nonparametric Bayes-risk Estima-

tion", IEEE Trans. on Information Theory, Vol. IT-17, No. 4,

pp.440-444, July 1971.

(7) Fraser, D. A. S., Nonparametric Methods in Statistics, New York:

John Wiley & Sons, Inc., pp.289-292, 1957.

(8) Fu, K. S., Sequential Methods in Pattern Recognition and Machine

Learning, New York: Academic Press, pp.97-101, 107, 1968.

(9) Fu, K. S. and Y. T. Chien, "Sequential Recognition Using a Non-

parametric Ranking Procedure", IEEE Trans. on Information Theory,

Vol. IT-13, No. 3, pp.484-492, July 1967.



86

(10) Groeneveld, R. A. "A Nonparametric Rank Correlation Method for

Detecting Signal in Additive Noise", IEEE Trans. on Information

Theory (Correspondence), Vol. IT-13, No. 2, pp.315-316, April

1967.

(11) Hajek, J., Nonparametric Statistics, New York: Holden-Day, 1969.

(12) Hajek, J. and Z. Sidak, Theory of Rank Tests, New York: Academic

Press, 1967.

(13) Henrichon, E. G. and K. S. Fu, "Calamitv Detection Using Non-

parametric Statistics", IEEE Trans. on Systems, Men, and Cyberne-

tics, Vol. SSC-5, No. 2, pp.150-155, April 1969.

(14) Hoel, P. G., Introduction to Mathematical Statistics, New York:

John Wiley & Sons, Inc., pp.329-349, April 1967.

(15) Hodges, J. L., and E. L. Lehmann, "The Efficiency of Some

Nonparametric Competitors of the t-test", Annals of Math.

Statistics, Vol. 27, pp.324-335, 1956.

(16) Kanefsky, M. and J. B. Thomas, "On Adaptive Nonparametric

Detection Systems Using Dependent Samples", IEEE Trans. on

Information Theory, Vol. IT-11, No. 4, pp.5 2 1-5 2 6, October 1965.

(17) Kraft, C. H. and C. van Eeden, A Nonparametric Introduction to

Statistics, New York: McMillan, 1968.

(18) Millard, J. B. and L. Kurz, "Adaptive Threshold Detection of M-ary

Signals in Statistically Undefined Noise", IEEE Trans. on Informa-

tion Theory (Correspondence), Vol. IT-13, No. 2, pp.341-342, April

1967.

(19) Millard, J. B. and L. Kurz, "Nonparametric Signal Detection -

An Application of the K-S, Cramer-von Mises Tests", Report TR



87

400-127, New York University Laboratory for Electroscience

Research, New York: January 1966.

(20) Noether, G. E., Elements of Nonparametric Statistics, New York:

John Wiley & Sons, Inc., 1967.

(21) Savage, I. R., Bibliography of Nonparametric Statistics,

Harvard University Press, 1962.

(22) Thomas, J. B., "Nonparametric Detection", Proceedings of IEEE,

Vol. 58, No. 5, pp.623-631, May 1970.

(23) Walsh, J. E., Handbook of Nonparametric Statistics, Princeton,

N. J.: Van Nostrand, pp.158-165, 398-405, 1962.

(24) Woinsky, M. N., "Nonparametric Detection Using Spectral Data",

IEEE Trans. on Information Theory, Vol. IT-18, No. 1, pp.110-

118, January 1972.

(25) Wolff, S. S., J. B. Thomas and T. R. Williams, "The Polarity

Coincidence Correlator; a Nonparametric Detection Device",

IRE Trans. on Information Theory, Vol. IT-8, January 1962.

B. On General Probability and Pattern Recognition

(26) Cooper, P. W., "Quadratic Discriminant Functions in Pattern

Recognition", IEEE Trans. on Information Theory (Correspondence),

Vol. IT-11, No. 2, pp.313-3 15 , April 1965.

(27) Cover, T. M. and P. E. Hart, "Nearest Neighbor Pattern Classifi-

cation", IEEE Trans. on Information Theory, Vol. IT-13, No. 1,

pp.2 1-2 7, January 1967.

(28) Hancock, J. C. and P. A. Wintz, Signal Detection Theory, New York:

McGraw-Hill, pp.2 09-2 10, 1966.



88

(29) Ho, Y. C. and A. K. Agrawala, "On Pattern Classification

Algorithms-Introduction and Survey", Proceedings of IEEE, Vol.

56, December 1968.

(30) Kashyap, R. L. and C. C. Blaydon, "Recovery of Functions from

Noisy Measurements Taken at Randomly Selected Points and Its

Application to Pattern Classification", Proceedings of IEEE,

1966.

(31) Koch, G. S. and R. F. Link, Statistical Analysis of Geological

Data, New York: John Wiley & Sons, Inc., 1970.

(32) Lewis, A. J. and H. C. MacDonald, "Interpretive and Mosaicking

Problems of SLAR", Remote Sensing of Environment, Vol. 1, No. 4,

pp.231-236, December 1970.

(33) Nelson, G. D. and D. M. Levy, "A Dynamic Programming Approach

to the Selection of Pattern Features", IEEE Trans. on Systems,

Science, and Cybernetics, Vol. SSC-4, No. 2, pp.145-147, July 1968.

(34) Nelson, G. D. and D. M. Levy, "Selection of Pattern Features by

Mathematical Programming Algorithms", IEEE Trans. on Systems

Science, and Cybernetics, Vol. SSC-6, No. 1, pp.20-25, January,

1970.

(35) Nilsson, N. J., Learning Machines, New York: McGraw-Hill, 1965.

(36) Papoulis, A., Probability, Random Variables, and Stochastic

Processes, New York: McGraw-Hill, 1965.

(37) Schwartz, M., Information Transmission, Modulation and Noise,

2nd Ed. New York: McGraw-Hill, pp.366-368, 1970.

(38) Wee, W. G., "A Survey of Pattern Recognition", T-249, S&RD,

Honeywell Inc., St. Paul, Minn.



89

(39) Zagalsky, N., "A New Formulation of a Classification Procedure",

M.S. Thesis, University of Minnesota, March 1968.


